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The technique called Differential Sensitivity Theory (DST) is extended to the multi-component
system of equations solved by the MESA2D hydrocode.  DST uses adjoint techniques to determine
exact sensitivity derivatives, i.e., if R  is a calculation result of interest (response R ) and α i  is a
calculation input (parameter α i ), then ∂R ∂α i  is defined as the sensitivity.  The advantage of using
DST is that for an n-parameter problem all n sensitivities can be obtained by integrating the solutions
from only two  calculations, a MESA calculation and its corresponding adjoint calculation using an
Adjoint Continuum Mechanics (ACM) code.  Previous papers have described application of the
technique to one-dimensional, single-material problems.  This work presents the derivation and
solution of the additional adjoint equations for the purpose of computing sensitivities for two-
dimensional, multi-component problems.  As an example, results for a multi-material flyer plate impact
problem featuring an oblique impact are given.

INTRODUCTION

A sensitivity technique (1-3) used successfully
in the early eighties (4-6) called Differential
Sensitivity Theory (DST) is applied to a system
of time-dependent continuum mechanics
equations (7). DST uses adjoint techniques to
determine exact sensitivity derivatives, i.e., if R
is a calculational result of interest (response R )
and α  is a calculational input (parameter α i
where the subscript is usually not indicated for
convenience), then ∂R ∂α i  is defined as the
sensitivity. The advantage of using DST over
other sensitivity analysis techniques is mainly
economic: for an n-parameter problem all n
sensitivities can be obtained by integrating the
solutions from only two  calculations, a so-called
forward (physical) calculation and its
corresponding adjoint calculation. This work
describes the derivation and solution of the
appropriate set of adjoint and sensitivity
equations for the ultimate purpose of computing
sensitivities for high-rate two-dimensional,
multi-component, high deformation problems.

Following Cacuci et. al. (2), consider a system
of nonlinear equations written in symbolic form
as
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where the angle brackets denote space-time
integration. If Eq. 1 is differentiated with respect
to an arbitrary parameter α , then the resulting
system of equations is linear with respect to the
new differentiated dependent variable vector, and
has the form:
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where L  is a linear operator operating on the
dependent variable vector and   

v
s  represents a

vector source term that contains the problem
parameters differentiated with respect to α .
Taking the partial with respect to α  of  the
response (Eq. 2) gives
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Taking the inner product of the left-hand side of
Eq. 3 with an arbitrary vector function   

r
y*  and

invoking a property of inner-product spaces
gives
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where the function B  represents the appropriate
boundary terms. This equation can be used to
derive a linear adjoint to L  (i.e., L* ) that
operates on   

r
y*  and, when set equal to the

differentiated response function from the
integrand of Eq. 4, this system of equations can
be solved for the so-called adjoint solution:

  
L*r

y* = ∂F
∂
r
y

(6)

Substituting Eq. 6 into the right-hand side of Eq.
4, using the inner product property given by Eq.
5, and substituting again with Eq. 3 gives
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The last right-hand-side of this equation
represents the final integral form of the
sensitivity ∂R ∂α .

Practical application of DST requires the
solution of the adjoint system represented by Eq.
6 and the sensitivity integration represented by
Eq. 7.  In our previous paper (8), we presented
the forward equations , showed the adjoint
equation set, and provided an example for a

single material problem.  In what follows, we
show the additional terms and equations required
for multiple material problems and develop the
adjoint equations, whose solution results in the
sensitivity of the response to initial material
interface position.  We then show results for a
multi-material flyer in an oblique impact
situation.

DST WITH INTERFACES

Material interfaces manifest themselves in the
equation set as differences in material properties,
hence, differences in the equation of state (EOS).
In one dimension this results in discontinuous
behavior of the pressure. For a material that is
between zν  and zν+1  the pressure P  is given
by

P = Pν u z − zν − u z − zν+1[ ]
ν=1

N

∑ , (8)

where u is the unit step function. The "interface
equation" for tracking the νth  material
boundary, which moves at velocity uz , becomes

żν = uz
0

L

∫ δ z − zν dz . (9)

This results in a new dependent adjoint variable
ζν

*  whose time dependence is given by
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where Π* is the adjoint pressure and the α̃m  are
the interface discontinuous EOS parameters

α̃m = 1 − u z − zν( )αν
m − u z − zν+1 αν+1

m[ ] .

The following additional terms are introduced
into the adjoint density, axial velocity, and
energy equations, respectively:
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where ρ is the density and i is the internal
energy. Numerical approximation of the delta-
functions appearing in the adjoint equation set
was implemented using the method of Peskin (9).

Extension of the interface equations to two
dimensions is straight forward, has been
implemented, and is demonstrated below with an
oblique impact example.

OBLIQUE FLYER EXAMPLE

Consider the impact of the five-material flyer
shown in Fig. 1 with a rigid boundary. The
materials identified in the figure are represented
by Mie-Grueneisen EOSs (10).  The flyer has an
initial velocity of 500 m/s.  Upon impact the
plate experiences a right going shock that
compresses the materials.  Because the interfaces
are at an arbitrary angle, the problem is two-
dimensional.  The flyer is 1.5 cm in length, 0.5
cm in thickness and is divided into 0.25 mm
square cells (60 by 20 cells) for the numerical
computations. The impact problem was
simulated to a final time of 4.0 µs.

The response for this problem was arbitrarily
chosen to be the time-averaged pressure, i.e.,
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so that the adjoint source (appearing in the
adjoint pressure equation) for Eq. 6 is
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where t f  is the final time and V is the flyer
volume.  The interface is represented as linear
segments between the dots shown in Fig. 1.

The interface sensitivities for this impact
problem are given in Fig. 2 for the space-time-
average pressure (14.872 GPa). The sensitivity
for each marker is given by
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*
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Where zνo  is the initial axial position of the νth

marker. The figure shows the DST sensitivities
as hollow dots connected by a solid line, and the
"Direct Method" sensitivities ∆R ∆α  (a
numerical derivative obtained by determining the
change in the response as a result of finite
perturbations of each initial axial position) are
shown as solid dots connected by a dashed line
for validation purposes. Constructing the 20
Direct Method sensitivities required 21 forward
calculations, as compared to the 2 calculations
(i.e., one forward and one adjoint) needed for the
20 DST sensitivities shown.
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Figure 1. Five-material flyer initial configuration showing
interface markers.

SUMMARY AND DISCUSSION

Differential Sensitivity Theory was applied to
a two-dimensional set of continuum mechanics
equations with a realistic solid phase equation-
of-state (i.e., compressible flow) for the purpose
of sensitivity analysis. Equations adjoint to a
differentiated set of physical equations
(differentiated with respect to an arbitrary



parameter α ) were derived. The resulting DST
equation set was illustrated using a two-
dimensional flyer impact problem, computing
accurate sensitivity coefficients as validated with
the Direct Method. Curves comparing DST
∂R ∂α  to Direct Method ∆R ∆α  were
presented for 20 sensitivities associated with the

plate impact problem at a cost of 2 calculations
versus 21 calculations, respectively, a saving of
90% in computational time. These low-cost DST
sensitivity coefficients can then be used in a
subsequent uncertainty analysis, response surface
construction or optimization analysis.
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Figure 2. Average pressure sensitivity to initial interface axial position.
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